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Control of Attenuation Pole Frequency of a
Dual-Mode Microstrip Ring Resonator

Bandpass Filter
Arun Chandra Kundu, Member, IEEE,and Ikuo Awai, Member, IEEE

Abstract—A novel method is proposed to control the attenuation
pole frequency of a dual-mode circular microstrip ring resonator
bandpass filter, keeping the bandwidth constant. In this paper, the
coupling between the dual modes is provided as the total effect of
stub perturbation at the end of symmetry plane, and the angle be-
tween input/output ports. By making a various combinations of
these two parameters, it is possible to control the attenuation pole
frequency. An additional small coupling induced by excitation ca-
pacitance is also considered. Filters are simulated using the calcu-
lated coupling constant, and then the attenuation pole frequencies
and bandwidth of the simulated filters are verified by experiment.
Theoretical expressions are further devised to calculate the atten-
uation pole frequencies.

Index Terms—Attenuation pole frequency, bandpass filter,
bandwidth, coupling, dual mode, filter frequency, ring resonator.

I. INTRODUCTION

A S IS WELL known, use of a dual-mode resonator allows
the realization of a compact high-quality microwave band-

pass filter (BPF) and its attenuation poles play a vital role in
improving the skirt characteristics. Control of attenuation pole
frequency of a BPF with a constant bandwidth will open a new
door in the design of a BPF.

There have been many studies on dual-mode ring resonator
BPFs because a ring resonator has much potential for variety
of applications together with its simple structure [1]. However,
until today, few papers have been published regarding the at-
tenuation pole frequency control of a dual-mode BPF [2]–[5].
Reference [2] presents one of a few examples, though the atten-
uation pole frequency changes within a small range, thus, dis-
regarding the circuit matching. In our previous papers, we have
controlled the attenuation pole frequency of a dual-mode mi-
crostrip circular disk resonator by making a combination of two
stub perturbations placed along the symmetry plane, keeping the
total perturbation constant [3], [4]. However, we were able to
control the attenuation pole frequency only in a narrow range
by this method. In [5], some experimental data are presented
regarding attenuation pole frequency control of a dual-mode
dielectric waveguide resonator BPF, where the position of the
higher attenuation pole frequency remain almost unchanged, al-
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though the position of the lower attenuation pole frequency is
shifted with respect to the position of excitation electrodes.

In this paper, we will propose a new method to control the at-
tenuation pole frequencies over a wide range by making a var-
ious combination of stub perturbation and excitation angle. Cou-
pling between the two degenerate modes can be kept constant by
decreasing the stub perturbation and excitation angle at the same
time. In fact, decrease of stub perturbation reduces the internal
coupling between the dual modes. The excitation angle also has
an effect to internal coupling, i.e., coupling induced by the I/O
port impedance increases with the decrease of the I/O angle,
while the attenuation poles’ frequency changes differently ac-
cording to the two above-mentioned coupling schemes. As a re-
sult, we can create a combination of these two parameters to
obtain a constant coupling for design of a constant bandwidth
filter with controlled attenuation pole frequencies. New theo-
retical expressions are devised for coupling constant and atten-
uation pole frequencies. The calculated results are verified by
experiment and simulation. A unique, but complicating (second
order), effect of external circuit susceptance is also included to
characterize the coupling constant.

II. COUPLING CONSTANT

The external circuit susceptance and angular position of the
I/O terminal contribute to internal coupling between two reso-
nant modes in addition to the stub perturbation [6]. Considering
these three factors, we have devised a theory for coupling con-
stant as follows.

The configuration and schematic diagram of a microstrip ring
resonator are shown in Figs. 1 and 2, respectively, whereand

are the outer and inner radii of the ring resonator, respec-
tively. The thickness and relative dielectric constant of the sub-
strate are 1.6 mm and 10.5, respectively. Capacitive stub pertur-
bations having a width and length ofand , respectively, are
placed at the end of symmetry plane, which also contributes to
the appearance of attenuation poles at both sides of the pass-
band [6]. For even-mode resonant frequency calculation, the
symmetry plane in Fig. 2 will act as an open end, i.e., as a per-
fect magnetic wall, and the equivalent transmission-line circuit
of Fig. 2 will become as shown in Fig. 3. Thus, we can write

(1)

(2)
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Fig. 1. Configuration of a microstrip ring resonator.

Fig. 2. Schematic diagram of a microstrip ring resonator (a = 9:7mm,a =

7 mm, " = 10:5).

Fig. 3. Equivalent transmission-line circuit model for even-mode calculation
(The characteristic impedance of the transmission line is taken to be one).

where is (the terms , , and will be defined
in Section III), and are input admittances at the reference
plane, is the propagation constant,is ( the average of

and ), and is the normalized perturbation susceptance,
which can be defined as [2]

(3)

where is , is the angular resonant frequency,
is the characteristic admittance of the perturbation stub,

is the effective dielectric constant,is the velocity of light in free
space, and is the propagation constant without perturbation.

can be defined as [7]

(4)

Fig. 4. Equivalent transmission-line circuit model for odd-mode calculation.

where is the dielectric constant of the microstrip resonator,
is the width of the perturbation stub, andis the thickness of
the substrate.

At resonance

(5)

Let us suppose that . In other words, the res-
onant frequency is shifted a little from the original resonance
condition due to the perturbations. The propagation constant
is used here to represent the resonant frequency. By using Taylor
series expansion and doing some manipulations of (5), we get
the following relation for calculation of even-mode resonant fre-
quency by neglecting the terms of higher order than :

(6)

where

and

and is the change of the even-mode propagation constant.
For odd-mode resonant frequency, the symmetry plane of

Fig. 2 will simply be short circuited, i.e., act as a perfect elec-
tric wall, as shown in Fig. 4, and we can obtain the following
relation for the odd-mode propagation constant:

(7)

where is the change of the odd-mode propagation constant.
Hence, the coupling constant can be calculated using the fol-
lowing relation:

(8)
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Fig. 5. Connection of a resonator with external circuit via susceptance.

Fig. 6. Coupling constant versus excitation capacitance of a ring resonator
(f = 2:08 GHz,Y = 0:0283).

III. RESONANTFREQUENCY ANDEXTERNAL QUALITY FACTOR

The unperturbed resonant frequency of the dominant mode of
a microstrip ring resonator can be calculated using the following
relation [1]:

(9)

where is the velocity of light in free space, is the average
of the outer and inner radii of the ring resonator, andis the
effective dielectric constant.

When a circular microstrip ring resonator is connected to ex-
ternal circuits via a series susceptance, as shown in Fig. 1, the
external quality factor can be calculated by use of the
equivalence shown in Fig. 5 and expressed by the following
equation [4]:

(10)

where , ,
, is the excitation capacitance, is the characteristic

admittance of the ring resonator transmission line, is the
characteristic admittance of the external circuit, andis the
angular resonant frequency.

By taking the reciprocal of , we can calculate the external
circuit coupling with the variation of excitation capacitance.
The calculated result is shown in Fig. 6. From this figure, we
observe that the reciprocal of increases with monotoni-
cally.

Now, as an example, we will design a two-pole Butterworth
BPF of relative bandwidth 8.6% (resonant frequency of the mi-
crostrip ring resonator without perturbation is 2.08 GHz). We
know it requires the coupling constant 0.061 and, thus,

pF has to be chosen referring to Fig. 6. Hence, for I/O an-
gles of 90, 80 , and 70, we have tried to find out a coupling

Fig. 7. Transmission-line equivalent-circuit model of the BPF for simulation.

Fig. 8. Simulated responses of the filters explaining attenuation pole
frequency control.

constant of 0.061 at pF for various values of stub per-
turbations, which are also shown in Fig. 6. From this figure, we
observe that when the I/O angle is decreasing from 90to 70 ,
the amount of stub susceptance required to produce the same
amount of coupling is decreasing, i.e., the amount of internal
coupling contributed by the I/O terminal is increasing [6]. By
averaging the even- and odd-mode frequencies, we can calcu-
late the filter center frequency.

IV. SIMULATION AND FABRICATION OF BPFS

The transmission-line equivalent circuit of the ring resonator
BPF is shown in Fig. 7, where is the normalized total stub
perturbation at each symmetry end,is the external circuit sus-
ceptance, and and are the I/O terminals. We have simu-
lated this circuit by using the calculated circuit parameters for
various combinations, as discussed earlier [4]. The equivalent
perturbation capacitance is calculated by using the following
well-known equation:

(11)

The response of simulated filter is shown in Fig. 8. The cir-
cuit simulation was performed by using the Advanced Design
System (ADS), Agilent Technology, Tokyo, Japan. From this
figure, we observe that both of the attenuation poles are shifted
toward higher frequencies with an increase in the amount of stub
susceptance. Since the total amount of internal coupling remains
constant, the bandwidth remains the same in each case. The re-
sponse of a fabricated filter is shown in Fig. 9, which shows a
very good agreement with the simulated responses of Fig. 8.
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Fig. 9. Measured results for attenuation pole frequency control.

TABLE I
EXPERIMENTAL, SIMULATED , AND THEORETICAL FILTER CENTERFREQUENCIES

Since losses are not considered in simulation, there is a little
discrepancy between the decibel value of the attenuation pole
dip in simulated and experimental results. Due to the increase of
the amount of the stub susceptance (which acts as a parallel ca-
pacitance with the resonator) with the increase of the I/O angle,
the filter center frequency is slightly decreasing in each case
[4]. The experimental, simulated, and theoretical filter center
frequencies are shown in Table I, which are in good agreement.

V. ATTENUATION POLE FREQUENCIES

Referring to Fig. 7, the condition for appearance of attenu-
ation poles at both sides of the passband of a ring resonator
model, which is described by a model having two branch lines
from input to output, can be given as [3]

(12)

where

and

By following the same calculation procedure as in Section II,
we have the following relation to calculate the attenuation pole
frequencies using (12):

(13)

TABLE II
EXPERIMENTAL, SIMULATED , AND THEORETICAL ATTENUATION POLE

FREQUENCIES

Since (13) is a quadratic equation, we can get two values of
( and ) corresponding to higher and lower attenua-

tion pole frequencies. Hence,

(14)

and

(15)

where and are the higher and lower attenuation pole fre-
quencies, respectively. The calculated, simulated, and measured
attenuation pole frequencies are in good agreement with each
other, as shown in Table II.

VI. CONCLUSION

In this paper, we have successfully controlled the attenuation
pole frequencies of a dual-mode circular microstrip ring res-
onator BPF keeping the bandwidth constant. A theory to cal-
culate the coupling constant has been devised. The reason for
little variation in the filter center frequency has been illustrated.
The equation to calculate the attenuation pole frequency has
been explained. The theory presented in this paper is not lim-
ited to a circular microstrip or ring resonator structure, but will
be similarly applied to any circular dual-mode resonator BPF,
as shown in [4]. The wide range control of attenuation pole fre-
quency also opens a new door for designing a duplexer within
the desired band, with minimum overlapping or without over-
lapping of the transmission characteristics, since the sharpness
of the skirt characteristics of the BPF can be controlled over a
wide range.
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